
P: ISSN NO.: 2394-0344 E: ISSN NO.: 2455-0817

Thermal Decomposition Analysis on Carboxylates of Vanadium in Solid State

Abstract

The thermal decomposition analysis were made on carboxylates of vanadium (Palmitate, and Stearate) in solid state with a view to determine the Rate of reaction, Order of reaction and Energy of activation. The result show that the order of reaction for the decomposition of carboxylates of vanadium is zero order and the Energy of activation lie between 7.4 - 9.9 k cal mol⁻¹. These results were discussed in term of some well known equation and the results were in agreement with properties.

Keywords: Carboxylates, Order of Reaction, Energy of Activation. **Introduction**

Aim of the Study

The results of the survey of literature reveals that the thermogravimetric analysis on carboxylates of Vanadium have not been systematically investigated while they have many uses in industries and academic field. The aim of this research work is to study the thermogravimetric analysis on carboxylates of Vanadium in solid state.

Experimental

The carboxylates of vanadium (Palmitate and Stearate) were synthesized by direct metathesis of corresponding potassium soaps with the required amount of aqueous solution of vanadium nitrate at $50-55^{\circ}$ C under vigourous stirring. The precipited soaps were washed several times with distilled water and acetone to remove the fatty acid and metal nitrate. The soaps were purified by recrystallisation, dried in an air oven at $50-60^{\circ}$ C and the finally drying of the soaps were carried out under reduced pressure. The purity of the carboxylates of vanadium were checked by IR spectra and determination of their melting points. The thermogravimetric analysis on carboxylates of vanadium were carried out by a Perkin-Elmer thermogravimetric analyser TGS2 at constant heating rate (10° per minute) in nitrogen atmosphere.

Review of Literature

Present research work reviews the literature relevant with the aim of study. the thermogravimetric analysis on carboxylates of transition metals have been studied by several workers. Some of them are listed below.

M.S.Khirwar Assistant Professor, Deptt. of Chemistry, R.B.S. College, Agra, U.P. India

Remarking An Analisation

P: ISSN NO.: 2394-0344 E: ISSN NO.: 2455-0817

M.S.Khirwar (2016) was studied the thermogravimetric analysis of yttrium soaps in solid.

Rajesh Dwivedi (2014) was studied the Physicochemical Studies on Erbium Soaps of Saturated Higher Fatty Acids in Solid State.

K . N. Mehrotra (1997) was studied the thermal decomposition kinetics of nickel and manganese soaps.

Result and Discussion

The results of thermal decomposition analysis on carboxylates of vanadium (Palmitate and Strearate) and the treatment of the data recorded in 1-3). The final residue on thermal decomposition of vanadium soap is vanadium oxide. This conclusion is in harmony with the fact that the weight of residue is in agreement with theoretically calculated weight of vanadium oxide from the molecular formula of the corresponding soap. It may be pointed out that some white crystalline powder is found condensed at the cold part of the sample tube surrounding the soap and it is identified by the determination of M.P., Plamitone (84.8°C) and stearone (89.6°C) for vanadium carboxylates of Palmitate and Stearate, respectively. The thermal decomposition on carboxylates of vanadium can be expressed

$$2(RCOO)_3M \rightarrow 3R.CO.R + M_2O_3 + 3CO_2$$

Metal Ketone Metal Carbon
Carboxylates Oxide -dioxide

Where, M is vanadium metal, R is $C_{15}H_{31}$ and $C_{17}H_{35}$ for Palmitate and Stearate, respectively.

Freeman and Carroll's [13] expression for the thermal decomposition of Vanadium carboxylates where the soap disappears continuously with time and temperature and one product is gaseous can be expressed as-

$$\frac{\log(dw/dt)}{\Delta(logW_r)} = \frac{-E}{2.303RT} \cdot \frac{\Delta t(1/T)}{\Delta(logW_r)} + n$$
 were E, n, T, W_r and dw/dt are Energy of

were E, n, T, W_r and dw/dt are Energy of activation, Order of reaction, Temperature on absolute scale, Difference between the total loss in weight and the loss in weight at time t, and Rate of weight loss

obtained from the loss in weight vs time curves at appropriate times, respectively.

The plots of the loss in weight of the soap, W against time t, and values of (dw/dt) are obtained from the curves by drawing tangents at appropriate times. The values of W_r have been calculated from the total loss in weight of the soap and the loss at predetermined time (table: 1) and the plots of $\Delta\{log(dw/dt)\}/\Delta(log w_r)$ against $\Delta(1/T)/\Delta(log w_r)$ are obtained . The treatment of the thermogravimetric data according to Freeman-Carroll's equation is given in (table: 2).

The results indicate that the order of reaction for decomposition of Vanadium carboxylates is zero order and the values of energy of activation lie between 7.4-9.9 k cal mol⁻¹ (table: 4).

It is suggested that the surface of the metal carboxylates molecules remains completely covered all the time by the molecules of the gaseous product as the decomposition is fast so that rate of the decomposition becomes constant and process is kinetically of zero order.

The values of the energy of activation for the thermal decomposition of Vanadium carboxylates have also been calculated by using coats and Redfern's [14] equation which can be expressed as-

$$\log\left[\frac{1 - (1 - \infty)^{1 - n}}{T^2(1 - n)}\right] = \log\frac{AR}{aE}\left[1 - \frac{2RT}{E}\right] - \frac{E}{2.303RT}$$

where α , T, R, A, a, E and n are Fraction of the soap decomposed, Temperature on absolute scales, Gas constant, Frequency factor, Rate of heating in 0 C per minute, Energy of activation, and Order of the reaction, respectively.

The equation for zero order reaction can be written as-

$$log\left[\frac{\alpha}{T^2}\right] = log\frac{AR}{aE}\left[1 - \frac{2RT}{E}\right] - \frac{E}{2.303RT}$$
 The plot of $log\left(\alpha/T^2\right)$ against $(1/T)$ should be a

The plot of $log (\alpha/T^2)$ against (1/T) should be a straight line with its slope equal to [-E/2.303R]. The values of the energy of activation obtained from the plots lie between 7.4-9.9 k cal mol⁻¹ and are in agreement with values obtained from Freeman-Carroll's equation (table: 4).

Table 1 : Thermal decomposition data of Vanadium Carboxylates.

Sr. No.	Time, t (Minutes)	Temperature T ⁰	Weight of soap decomposed W x 10 ³ (gms)	$\frac{dw}{dt} \times 10^6$	<i>W</i> _r x 10 ³		
	Vanadium Palmitate						
1.	6.1	330	83.24	-	72.37		
2.	7.4	348	81.23	7.75	70.36		
3.	9.3	364	78.80	8.89	67.93		
4.	12.3	401	78.21	7.20	66.34		
5.	14.3	416	77.61	6.58	66.74		
6.	16.0	433	77.40	6.00	66.53		
Vanadium Strearate							
1.	6.1	330	114.04	-	82.42		
2.	8.4	351	112.43	1.952	80.26		
3.	10.1	373	110.88	3.062	79.66		
4.	23.4	501	109.28	2.051	77.71		
5.	25.1	523	105.33	3.441	73.30		
6.	27.2	543	102.92	4.048	71.74		

P: ISSN NO.: 2394-0344 E: ISSN NO.: 2455-0817

Remarking An Analisation

Table 2 : Freeman Carroll's Treatment of Thermogravimetric Data of Vanadium Carboxylates

Sr. No.	1 105	-∆ (log w _r)	-∆{log (dw/dt)}	$-\Delta log(1/T)$	$-\Delta log(dw/dt)$
	$\frac{1}{T} \times 10^5$			$\overline{logW_r \times 10^4}$	$\Delta logW_r$
Vanadium Palmitate					
1.	303.03	2.140	-	1.416	-
2.	287.35	2.152	4.110	1.335	1.909
3.	274.72	2.171	4.051	1.267	1.869
4.	249.37	2.175	4.142	1.114	1.904
5.	240.38	2.176	1.181	1.105	1.922
6.	230.94	2.179	4.221	1.061	1.939
		•	Vanadium Strearate	e	
1.	303.03	2.083	-	1.454	-
2.	284.90	2.092	4.709	1.632	2.250
3.	268.09	2.100	4.513	1.276	2.149
4.	199.60	2.109	4.688	0.946	2.222
5.	191.20	2.132	4.463	0.896	2.093
6.	184.16	2.146	4.392	0.858	2.046

Table 3: Coats-Redfern's Treatment of Thermogravimetric Data of Vanadium carboxylates

Sr. No.	Temperature T	$\frac{1}{T} \times 10^5$	α	$\alpha/10^7$	$-[log(\alpha/T^2)]$
Vanadium Palmitate					
1.	330	303.03	0.133	12.21	5.913
2.	345	287.35	0.146	12.26	5.911
3.	364	274.72	0.158	11.92	5.923
4.	401	249.37	0.171	10.63	5.973
5.	416	240.38	0.210	12.13	5.915
6.	433	230.94	0.235	12.53	5.901
		Vanadium S	Strearate		
1.	330	303.03	0.214	19.65	5.706
2.	351	284.90	0.224	18.18	5.740
3.	373	268.09	0.240	17.25	5.763
4.	501	199.60	0.255	10.15	5.993
5.	523	191.20	0.265	9.68	6.013
6.	543	184.16	0.280	9.49	6.022

Table:4 Energy of activation(k cal mol⁻¹) for the Decomposition of Vanadium Carboxylates by Various

=4					
Sr No.	Name of Metal Carboxylates	Freeman-Carroll's equation	Coats-Redfern's equation		
1.	Vanadium Palmitate	9.6	9.9		
2.	Vanadium stearate	8.4	7.9		

Conclusion

It is therefore, concluded that the rate of decomposition of Vanadium carboxylates is kinetically zero order and the energy of activation for the process lies in the range of 7.4-9.9 k cal mol⁻¹ through thermogravimetric analysis.

Endnotes

- Matsumote, Norichika, Jpn, Kolai, Tollyo Koha Jp, 38. 198 (2002) (Cl. C11 D 13/02) 6 Feb-(2002) April 2000/222. 603, 24 July (2000).
- Matsumote, Norichika, Jpn, Kolai, Tollyo Koha Jp, 317. 199 (2002); (Cl. C11 D 13/00) 31 Oct-(2002) April 2001/122. 673, 2pp 20 April 2001 (Japan).
- Zein, E., Shoeb, M., Sayed Hammad, A.A., Yousef Grases Aceites (Sevilla). (Eng.) 50(6), 426-434 (1999).
- Baillie, M.J., Brown, D.H., Moss, K.C. and Sharp, D.W.A. J.Chem. Soc. (A), 3110 (1968).
- 5. Chowdowska, J., Palicka and Nilsson, M., Acta Chem. Scand., 25, 3353 (1970).

- Malik, W.U. and Ahmad, S.L., Kolloid, Z.Z., Polyms, 234(1), 1045-48 (1989).
- 7. Upadhyaya, S.K. and Prem, S., Asian J. Chem., 9(3), 388-394 (1997).
- Mehrotra, K.N., Rajwanshi, P., Mishra, S. and Rawat, M.K., J. Indian Chem. Soc., 74(5), 399-401 (1997).
- 9. Dwivedi, R., Gangwar, B., and Sharma, M., Int. J. Curr. Microbid. App. Sci. 3(9), 501-504(2014).
- 10. Rawat, M.K., J. Indian Council Chem., 16(2), 29-35 (1999).
- 11. Khirwar, M.S., Remarking An Analisation, Vol. 3, Issue-7, 01-04 (2018).
- Rawat, M.K. and Sharma, Geeta, J. Ind. Chem. Soc., 84, 46-49 (2007).
- 13. Freeman, E.S. and Caroll, B., J. Phys, Chem., 62, 394 (1958).
- 14. Coats, A.W. and Redfern, J.P., Nature, 68 201 (1964).